Reproducibility of graph metrics of human brain structural networks

Recent interest in human brain connectivity has led to the application of graph theoretical analysis to human brain structural networks, in particular white matter connectivity inferred from diffusion imaging and fiber tractography. While these methods have been used to study a variety of patient populations, there has been less examination of the reproducibility of these methods. A number of tractography algorithms exist and many of these are known to be sensitive to user-selected parameters. The methods used to derive a connectivity matrix from fiber tractography output may also influence the resulting graph metrics. Here we examine how these algorithm and parameter choices influence the reproducibility of proposed graph metrics on a publicly available test-retest dataset consisting of 21 healthy adults. The dice coefficient is used to examine topological similarity of constant density subgraphs both within and between subjects. Seven graph metrics are examined here: mean clustering coefficient, characteristic path length, largest connected component size, assortativity, global efficiency, local efficiency, and rich club coefficient. The reproducibility of these network summary measures is examined using the intraclass correlation coefficient (ICC). Graph curves are created by treating the graph metrics as functions of a parameter such as graph density. Functional data analysis techniques are used to examine differences in graph measures that result from the choice of fiber tracking algorithm. The graph metrics consistently showed good levels of reproducibility as measured with ICC, with the exception of some instability at low graph density levels. The global and local efficiency measures were the most robust to the choice of fiber tracking algorithm.

fninf-08-00046-g002

Fusing functional signals by sparse canonical correlation analysis improves network reproducibility

We contribute a novel multivariate strategy for computing the structure of functional networks in the brain from arterial spin labeling (ASL) MRI. Our method fuses and correlates multiple functional signals by employing an interpretable dimensionality reduction method, sparse canonical correlation analysis (SCCA). There are two key aspects of this contribution. First, we show how SCCA may be used to compute a multivariate correlation between different regions of interest (ROI). In contrast to averaging the signal over the ROI, this approach exploits the full information within the ROI. Second, we show how SCCA may simultaneously exploit both the ASL-BOLD and ASL-based cerebral blood flow (CBF) time series to produce network measurements. Our approach to fusing multiple time signals in network studies improves reproducibility over standard approaches while retaining the interpretability afforded by the classic ROI region-averaging methods. We show experimentally in test-retest data that our sparse CCA method extracts biologically plausible and stable functional network structures from ASL. We compare the ROI approach to the CCA approach while using CBF measurements alone. We then compare these results to the joint BOLD-CBF networks in a reproducibility study and in a study of functional network structure in traumatic brain injury (TBI). Our results show that the SCCA approach provides significantly more reproducible results compared to region-averaging, and in TBI the SCCA approach reveals connectivity differences not seen with the region averaging approach.

For each metric, using both region averaging (orange) and SCCA (yellow), connectivity matrices were calculated from ASL data acquired in separate acquisitions in the same day and for data acquired one week apart. Whole network correlations were then calculated to examine reliability for the daily (left) and weekly (right) data for each subject. Here we illustrate results using sparsity values of s=t=0.05. A range of sparsity values (s=t) up to 0.25 were examined and these higher values did not produce qualitatively different results.

For each metric, using both region averaging (orange) and SCCA (yellow), connectivity matrices were calculated from ASL data acquired in separate acquisitions in the same day and for data acquired one week apart. Whole network correlations were then calculated to examine reliability for the daily (left) and weekly (right) data for each subject. Here we illustrate results using sparsity values of s=t=0.05. A range of sparsity values (s=t) up to 0.25 were examined and these higher values did not produce qualitatively different results.

J. T. Duda, J. A. Detre, J. Kim, J. Gee, and B. B. Avants, “Fusing functional signals by sparse canonical correlation analysis improves network reproducibility,” in Medical image computing and computer-assisted intervention–miccai 2013, Springer, 2013, pp. 635-642.

Structural and functional connectivity have network-wide influences upon cognitive performance

In this paper functional subnetworks in the brain were examined using MRI to measure both structural connectivity and functional connectivity. Additionally, the influence on behavior of both types of connectivity examined to determine the degree to which each provides unique information as well as how this information may be used to identify the parts of a network that are most influential on behavioral performance. Functional connectivity involves co-activation of brain regions during performance of a task while brain recruitment is monitored with fMRI. Structural connectivity is related to the long tract white matter projections that may integrate recruited brain regions biologically. Here we demonstrate how structural and functional connectivity may be used to examine small, functionally defined subnetworks in the brain during performance of a common language task. Functionally defined cortical regions are used along with a population-averaged diffusion tensor atlas to identify the white matter pathways that provide the basis for biological connectivity. A centerline-based method is used to provide a geometric model that facilitates the equidimensional comparison of functional and structural connectivity within a network. Behavioral data are used to identify the relative contributions of function and structure, and the degree to which each provides unique insight into behavior.

Duda, Jeffrey T., “Characterizing Connectivity In Brain Networks Using Magnetic Resonance Imaging” (2010). Publicly accessible Penn Dissertations. Paper 191.